Skip to main content

Study information

Fundamentals of Data Science - 2024 entry

MODULE TITLEFundamentals of Data Science CREDIT VALUE30
MODULE CODEMTHM601 MODULE CONVENERDr Tim Hughes (Coordinator)
DURATION: TERM 1 2 3
DURATION: WEEKS 11 0 0
Number of Students Taking Module (anticipated) 50
DESCRIPTION - summary of the module content

This module develops core skills in data science, modelling, and essential programming skills. The ability to extract information from data as a basis for evidence-based decision making and policy is becoming increasingly important across a wide variety of sectors in the world of big data, including climate, health, technology, and the environment. This module will equip you with the tools required to collate, import and manipulate data, together with methods for inference. You will be introduced to different types and sources of data and the tools for performing data analysis, from producing informative graphical summaries to generating sophisticated visualisations. These techniques are crucial both as the basis for communication and for informing complex modelling. This will be placed in a contemporary and cutting edge setting through the use of locally curated and global open source datasets, and will draw on the flexible and freely available programming environments of Python and R. 

AIMS - intentions of the module
This module aims to equip you with the skills that are required to collect, collate, process, manipulate, analyse and interpret data effectively and efficiently. You will be introduced to techniques for importing data from a range of sources into the format that is appropriate for many data types and their further processing and analysis.  You will learn how to merge information from multiple sources to develop greater insight, and you will learn how to pre-process data to enable the effective application of analysis techniques. This will include data cleansing, handling of missing, corrupted, uncertain and/or biased data, and the graphical representation of data. You will develop an appreciation of these concepts, and the ways in which their effects might be mitigated. This will enable you to communicate possible issues with the analysis of data when writing reports and making recommendations based on statistical analyses.
 
This module will also equip you with the skills that are needed to perform a range of data science and statistical analysis techniques, and to understand and interpret their outputs. This will include an introduction to the mathematical and statistical techniques underpinning data science, familiarisation with the open source scientific computing languages R and Python, and an overview of supervised and unsupervised machine learning methods.
 
You will be encouraged and supported to develop your data science skills alongside your specialism, exploring datasets relevant to ecology; evolution; environment; sustainability; and/or renewable energy. Activities will include data wrangling, data analysis, report writing and presentation. Assessments will be based on a series of practical examples using real-world data examples that aim to demonstrate the full range of skills required to make effective use of data. 
 
INTENDED LEARNING OUTCOMES (ILOs) (see assessment section below for how ILOs will be assessed)

On successful completion of this module you should be able to:
 

Module Specific Skills and Knowledge

1. Demonstrate the ability to import, manipulate and summarise data, including an understanding of the relative merits of different methods of formatting;
2. Demonstrate an understanding of how data source and way of collection effect subsequent data analyses;
3. Demonstrate effective use of Python and/or R/RStudio to facilitate data wrangling, unsupervised and supervised data analyses;
 

Discipline Specific Skills and Knowledge

4. Demonstrate effective and efficient data processing and programming skills;
5. Demonstrate competencies of data visualization; 
6. Demonstrate an understanding of the methodology and practical use of a range of data analysis techniques, including unsupervised and supervised machine learning and statistical modelling methods;  
7. Demonstrate an understanding of common pitfalls in data processing and analysis and how to avoid them;
8. Demonstrate appreciation and understanding of relevant datasets in application areas;
 

Personal and Key Transferable / Employment Skills and Knowledge

9. Data and statistical analysis skills;
10. Use of Python, R/RStudio and other software;
11. Effective use of learning resources;
12. Report writing and presentation.
 

 

SYLLABUS PLAN - summary of the structure and academic content of the module

 The precise syllabus may vary slightly from year to year, and the below is provided as an indication of the typical content. 

  • Data collection, pre-processing and communication: 

  • Cleansing; 

  • Visualisation; 

  • Handling missing, corrupted, uncertain and/or biased data; 

  • Effective programming: 

  • Coding in R/R Studio and Python; 

  • Computer Hardware; 

  • Version control, collaborative and high performance computing; 

  • Reproducible programming; 

  • Analysis: 

  • Fundamentals of probability, linear algebra and calculus; 

  • Fundamentals of statistical modelling; 

  • Sampling and sampled data; 

  • Inference, confidence intervals, and hypothesis testing; 

  • Regression analysis and model selection; 

  • Spatial-temporal and hierarchical models; 

  • Introduction to machine learning: supervised methods (e.g., classification and regression) and unsupervised methods (e.g., clustering and dimensionality reduction); 

  • Application areas: 

  • Datasets for ecology and evolution: populations, infectious diseases, biodiversity, genetics; 

  • Datasets for renewable energy: solar, wind, marine (resource and generation data), electricity/heat consumption, smart grid; 

  • Datasets for environment and sustainability: sustainable development indices, health, weather and climate, land and marine pollution. 

 

The assessment structure on this module is subject to review and may change before the start of the new academic year. Any changes will be clearly communicated to you before the start of term and if you wish to change module as a result of this you can do so in the module change window. 

 

LEARNING AND TEACHING
LEARNING ACTIVITIES AND TEACHING METHODS (given in hours of study time)
Scheduled Learning & Teaching Activities 60 Guided Independent Study 240 Placement / Study Abroad 0
DETAILS OF LEARNING ACTIVITIES AND TEACHING METHODS
Category Hours of study time Description
Scheduled Learning and Teaching Activities 30 Lectures and tutorials
Scheduled Learning and Teaching Activities 30 Hands-on practical sessions
Guided Independent Study 120 Self-study and background reading
Guided Independent Study 120 Assessed data analyses, quizzes, report writing and preparation for presentations

 

ASSESSMENT
FORMATIVE ASSESSMENT - for feedback and development purposes; does not count towards module grade
Form of Assessment Size of Assessment (e.g. duration/length) ILOs Assessed Feedback Method
Exercises Several quizzes/exercise sheets 1-11 Oral, during tutorial sessions
Practicals Several practical sheets for self-directed and guided learning 1-11 Oral, during tutorial sessions

 

SUMMATIVE ASSESSMENT (% of credit)
Coursework 100 Written Exams 0 Practical Exams 0
DETAILS OF SUMMATIVE ASSESSMENT
Form of Assessment % of Credit Size of Assessment (e.g. duration/length) ILOs Assessed Feedback Method
Exercises 50 Several quizzes/ exercise sheets (4 expected) 1-11 Written, oral or automated feedback
Report 50 Approx. 10-15 pages 1-12 Written

 

DETAILS OF RE-ASSESSMENT (where required by referral or deferral)
Original Form of Assessment Form of Re-assessment ILOs Re-assessed Time Scale for Re-assessment
Exercises Coursework (100%) 1-11 To be agreed by consequences of failure meeting
Report Coursework (100%) All To be agreed by consequences of failure meeting

 

RE-ASSESSMENT NOTES
Deferral – if you miss an assessment for certificated reasons judged acceptable by the Mitigation Committee, you will normally be either deferred in the assessment or an extension may be granted. The mark given for a re-assessment taken as a result of deferral will not be capped and will be treated as it would be if it were your first attempt at the assessment.
 
Referral – if you have failed the module overall (i.e. a final overall module mark of less than 50%) you will be required to resubmit the original assessment as necessary. The mark given for a re-assessment taken as a result of referral will be capped at 50%.
 
RESOURCES
INDICATIVE LEARNING RESOURCES - The following list is offered as an indication of the type & level of
information that you are expected to consult. Further guidance will be provided by the Module Convener

Web-based and electronic resources:

  • ELE – https://vle.exeter.ac.uk/

Other resources:

  • Recent articles and open-source codes provided by the tutors.

Reading list for this module:

There are currently no reading list entries found for this module.

CREDIT VALUE 30 ECTS VALUE 15
PRE-REQUISITE MODULES None
CO-REQUISITE MODULES None
NQF LEVEL (FHEQ) 7 AVAILABLE AS DISTANCE LEARNING No
ORIGIN DATE Tuesday 12th March 2024 LAST REVISION DATE Tuesday 12th March 2024
KEY WORDS SEARCH Data processing; Data visualisation; Programming; Statistical modelling; Machine learning; Applied data analysis

Please note that all modules are subject to change, please get in touch if you have any questions about this module.